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Diffusive behavior of a particle in a two-dimensional random correlated potential with Gaussian distribution
and exponential correlation is investigated via Langevin simulation. Our results show that superdiffusion
appears only in the early period of the time of evolution and there does not exist an intermediate time for the
occurrence of the whole issue from subdiffusion to superdiffusion. Whether the asymptotic situation of the
particle could be arrived before the simulation stops is strongly influenced by the finite-size effect of the
random correlated potential simulated. By applying the random correlated potential to the decay of a meta-
stable system, we find that the escape rate of a particle is decreased by hill effect of the random potential.
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In recent years, there has been great interest in anomalous
diffusion which was observed in many situations �1�.
The motion of a particle is affected by the dissipative influ-
ence of a disordered heat bath. The mean square displace-
ment �MSD� of the force-free particle is characterized by
�x2�t��� t� at long times, where � is a phenomenological
power exponent taking the values 0���2. For normal dif-
fusive behavior, MSD increases linearly with time, it grows
sublinearly with time for subdiffusion and grows superlin-
early with time for superdiffusion. Recently, Sancho et al.
�2,3� showed that the nature of intermediate-time diffusive
behavior for Langevin dynamics on a two-dimensional �2D�
random correlated potential �RCP� surface with Gaussian
distribution varies as the friction coefficient changes. The
subdiffusion occurs for high friction and the superdiffusion
occurs for low friction. These are significant results, espe-
cially since they may explain the apparent “Lévy flight” re-
sults observed in recent experiments and simulations. It
should be an interesting and largely uncharted territory, if it
is true. Nevertheless, the argument still remains on the inter-
mediate time when the superdiffusion occurs �4,5�.

An excellent experiment was reported on the effect of
bacterial motion on micron-scale beads in a freely suspended
soap film �6�. The MSD of the particle shows ballistic diffu-
sion in short time and normal diffusion is recovered in the
long time limit. This is a result of the transient formation of
coherent structures in the bacterial bath. It is known that the
MSD of a particle driven by a Gaussian white noise always
shows an increasing behavior with time faster than the linear
law at the early time, and approaches asymptotically normal
diffusion. An instant approach �7� was developed for calcu-
lations of various correlation functions describing the statis-
tical behavior of the elastic string in the two-dimensional
random potential. However, in the present state, the analyti-
cal result for the damping RCP is not available, so more
extensive numerical simulations with various parameters are
necessary. Anyway, the generation of the RCP with a large
spatial scale is required to simulate the motion of the particle
during a long period of time especially in the case of weak

friction, because the simulation will be stopped once a par-
ticle reaches one boundary of the potential.

Diffusion and transport in the presence of the RCP has
been applied to investigate many microscopic phenomena in
molecular biology. In the process of the protein sliding along
the DNA activated by thermal noise, the energy of the pro-
tein has a random correlated component. During the trans-
port of the DNA through the nanopore, the potential energy
of the DNA is randomly correlated too. These examples of
application have been discussed in detail in Ref. �8�.

In this paper, we are aiming at identifying time-dependent
diffusive behavior of an underdamped particle in a two-
dimensional random correlated potential with Gaussian dis-
tribution and exponential correlation. The characteristic
quantity is the MSD divided by time. It will be shown from
our simulations with a larger spatial scale that the asymptotic
diffusive behavior of the particle in the 2D RCP that we
considered here is subdiffusion for various parameters. Fur-
thermore, we consider a particle escaping out of a metastable
potential well in the presence of a random correlated poten-
tial and calculate the time-dependent escape rate.

The equation of motion of a 2D diffusing particle reads

mẍ = − �V�x� − �ẋ + ��t� , �1�
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FIG. 1. �r2�t�� /4� for three sets of values of the random poten-
tial intensity g0 and the damping coefficient �. All the parameters
are the same as Ref. �5� and �=2�	2g0, �r2����= ��x���
−x�0��2 /	2�+ ��y���−y�0��2 /	2�. � has been defined in Ref. �2�.
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where � is the coefficient of friction, ��t� denotes the Gauss-
ian white noise with zero mean and obeys the fluctuation-
dissipation relation

��i�t�� j�t��� = 2�kBT
ij
�t − t�� , �2�

where kB is the Boltzmann constant and T is the absolute
temperature. The 2D RCP V�x� has a Gaussian distribution
with zero mean and exponential correlation function

�V�x�V�x��� = g0 exp�− �x − x��2/�2	2�� . �3�

Two basic parameters which characterize the RCP are the
correlation length 	 and the potential intensity g0.

The Brownian motion of noninteracting particles in the
RCP has been extensively presented in Refs. �9,10�. The
overdamped diffusion in the short ranged RCP was investi-

gated in Ref. �11�. By means of the algorithm of Refs.
�11,12�, the RCP with any spatial correlation can be gener-
ated. In our simulations, the one-dimensional �1D� RCP is
generated on a linear grid of size L1=222 and the 2D RCP is
constructed on a square grid of size L2�L2 where L2=213

except for Fig. 1. The linear size of the cell is 
x=1.0 and
kBT=0.1 in the forthcoming simulations except for Fig. 1.
Note that the size of 2D RCP in this paper is twice as large as
that in Refs. �2,3�, which allows us to treat the diffusion of
the test particles for a longer period of time. At the initial
time, the particles are uniformly randomly located in a line
section in the 1D case or a square in the 2D case, with a
Maxwellian velocity distribution. The stochastic Runge-
Kutta algorithm �13,14� is used to numerically solve the
Langevin equation �1� discretized in time.

First, we carry out simulations for the time-dependent dif-
fusion of the particle in the 2D RCP with the size of lattice
L2=16 382 which is four times as much as that of Ref. �5�.
The 2D MSD of the particle �r2���� is plotted in Fig. 1. It is
seen that our results are the same as that of Ref. �5� before
the time when their simulations are stopped, displaying dif-
fusive and subdiffusive regimes. However, there does not
exist superdiffusive behavior for a 2D diffusing system after
the time �=5�102. It is clear that the particle becomes free
when the temperature is very high comparing with the barrier
height of the RCP, for instance, the maximal value of g0 is
about 0.03 and the temperature is kBT=0.2 as used in Ref.
�5�. This implies that the test particles have sufficient thermal

TABLE I. The coefficients of fitting function A+Bt� for MSD
vs 	.

	 � �

5 0.627 0.37

10 0.625 1.04

15 0.647 1.53

20 0.658 2.08

25 0.631 3.70

30 0.613 5.75

40 0.636 6.87

FIG. 2. Mean square displacements of the particle in the 2D
RCP at fixed kBT=0.1. �a� g0=0.16, 	=5.0, �=0.0005, 0.005, 0.05,
0.5, and 1.0 from top to bottom. �b� g0=0.2, �=0.1, 	=25, 20, 15,
and 10 from top to bottom.

FIG. 3. Mean square velocity of the particle in the 2D RCP for
various �=0.005, 0.05, 0.5, and 1.0 from top to bottom. The param-
eters used are kBT=0.1, g0=0.16, and 	=5.0.

FIG. 4. Comparison of the 1D MSD with the 2D MSD for
several values of �. The parameters used are kBT=0.1, g0=0.16,
and 	=5.0.
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energy to overcome the barrier of the RCP, so the asymptotic
diffusion of the particle seems to be normal in this case.

Figures 2�a� and 2�b� show the time-dependent 2D MSD
for various frictions � and correlation lengths 	 of the RCP.
For early times, the test particles, which are located on bar-
riers at the initial time, slide down quickly and show super-
diffusion. Nevertheless, the asymptotic behavior of the par-
ticle becomes the subdiffusion at long times, because the
friction and the RCP dissipate the kinetic energy of the par-
ticle. Superdiffusion only exits in the early time of evolution,
but the transient superdiffusion of this kind cannot be re-
garded as the characteristic behavior of the system. Indeed,
the diffusive behavior of the particle appears to be a non-
monotonic varying with time and the transient time corre-
sponding to the curve peak comes later when the friction
decreases or the correlation length of the RCP increases.

Let us discuss the role of the correlation length of the
RCP in detail. We assume that the MSD is written as a func-
tion of time, i.e., �r2�t��=A+Bt� at long times, and present
some fitting results in Table I. It is seen that the value of B
increases monotonously with 	. The particle diffuses more
quickly for a larger value of 	, because the distance between
the two adjacent barriers of the RCP increases and the po-
tential becomes flatter. The previous work has pointed out
that the exponent � is only determined by g0 and kBT in the
overdamped regime �11�. In the case of finite friction, our
results show that the dispersion of � is small enough to be
considered as the statistical uncertainty, then the exponent �
does not depend on 	 when the values of kBT, g0, and � are
fixed. This is in agreement with the results of Ref. �11�.

In Fig. 3, we plot the mean square velocity of the particle
for various �, which is used to check whether the system
has arrived at the stationary state. The initial velocity of
the particle obeys a Maxwellian distribution: P�v�0�
= �2�kBT�−d/2 exp�−�v�0�2 / �2kBT��, where d is the dimension
of the space. It is seen from this figure that the value of

��v��t��2� approaches dkBT in a long time limit. At the initial
time, some test particles are located at the barrier tops of the
2D RCP and then their potential energies are transferred into
kinetic energies in the early stages of time, however, the
friction makes the motion of the particle slower. Thus the
mean square velocity of the particle during the transient pe-
riod is larger than its equilibrium value. After a long time,
the particle approaches the equilibrium state in the velocity
space. This implies that the motion of the particle is not in
the asymptotic or stationary state before the value of ��v��t��2�
arrives at dkBT.

The comparison of the 2D results with the 1D results for
various frictions is plotted in Fig. 4. It is seen that the diffu-
sive behavior of the particle in the 2D RCP is similar to that
in the 1D RCP, because the two degrees of freedom are in-
dependent. In fact, the particle does not experience a descend
force anywhere. It always needs to climb over a ridge of the
RCP and remains for a longer time interval in a deeper well.
Namely, there is no way to make the asymptotic diffusive
behavior of the particle surpass normal diffusion in this kind
of RCP. We think that only subdiffusion appears in a long
time limit in this RCP at low temperatures, because the dif-
fusive mechanism of the classical particle is a process of
random barrier crossing. In the overdamped regime, the
MSD has the form �x2�t��� tzeff according to the renormal-
ization group calculations �9,11�, where zeff is the effective
subdiffusive exponent less than the unity. It is found from
our simulations that the particle with finite friction can arrive
at the asymptotic state before the simulation is stopped if the
size of the RCP is large enough. It is concluded that the
asymptotical behavior of the particle in the present RCP is
either subdiffusion at a low temperature or normal diffusion
at a high temperature.

As an application, we consider the time-dependent escape
rate of a particle in a one-dimensional metastable potential
adding a RCP, which is determined numerically by

FIG. 5. Time-dependent es-
cape rate for various g0 at �=0.1
in �a� and for various 	 at g0

=0.2 in �b�. The temperature is
kBT=0.1 and the number of text
particles 5�105. The total poten-
tial for various g0 is plotted in �c�
and various 	 in �d�.

TIME-DEPENDENT DIFFUSION IN A RANDOM¼ PHYSICAL REVIEW E 73, 031103 �2006�

031103-3



r�t� = −
1

N�t�
N�t�

t
. �4�

The bare metastable potential consists of an inverse har-
monic potential linking smoothly with a harmonic potential,
where the barrier height is equal to 2.0, the position of the
saddle point is xb=2.0, the coordinate of the link point is
xc=1.0, and the two well curvatures are �0=�b=1.0. In Eq.
�4�, N�t� denotes the number of test particles that have not
undergone an escape at time t and N�t� is the number of test
particles that have undergone an escape from the saddle
point of the bare metastable potential within a time interval
t→ t+t. In the simulations, t is chosen to be much larger
than the interval between the two successive escapes �15,16�.

Figures 5�a� and 5�b� show the time-dependent escape
rate of the particle for various g0 and 	. Here the case of
g0=0 corresponds to the usual barrier escape induced by a
Gaussian white noise. It is seen that the escape rate of the
particle in a metastable potential combining with a RCP is
less than that in a bare metastable potential. This can be
understood from the total potential plotted in Figs. 5�c� and
5�d�. There exist many hills before the saddle point in the
1D potential, thus the particle needs sufficient thermal en-
ergy to overcome each potential barrier so it can arrive at the
exit point. The increase of g0 leads to the hill being deeper
and the number of hill increases when the correlation length
of RCP decreases. Both are not propitious to diffusion and
escape.

From the above simulations of the diffusion in the RCP
and the escape process in the metastable potential, we have
found that the effect of the random correlated potential on

the diffusion is always negatively biased. The larger the in-
tensity g0 or the shorter the correlation length 	, the more
difficult the diffusion is, so that the asymptotical diffusive
behavior of the particle in the present random correlated po-
tential cannot surpass normal diffusion.

In summary, we have identified time-dependent diffusive
behavior of a particle in a random correlated potential with
Gaussian distribution and exponential correlation through
many simulations with a larger system. A translation of the
particle motion from initially superdiffusion to asymptotic
subdiffusion has been observed and the superdiffusion only
exists in the early stages of time. The friction indeed charac-
terizes the time scale of the system approaching the station-
ary state, namely, diffusion arrives slowly at the asymptotic
state when the friction decreases. We have emphasized the
importance of the size of the random correlated potential
simulation, because the simulation will be stopped once a
particle arrives at a boundary of the random correlated po-
tential. In the case of very little friction, the size of the ran-
dom correlated potential needs to be large enough, otherwise
the asymptotic behavior for a long amount of time cannot be
observed before the motion of the test particle is stopped. It
might be expected that the asymptotic behavior of a particle
in the random correlated potential with Gaussian distribution
and exponential correlation is normal diffusion at a very high
temperature, which is subdiffusion at a low temperature and
finite friction.
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